
Unit - IV

4.1 Basic Features of Python

Python is simple, easy to understand, high level programming

language. This was developed by Guido Van Rossum during the period

1980 to 1990 at National Research Institute for Mathematics and

Computer Science, Netherrlands. Python is a scripting language which

does not create intermediate object code file while executing a program.

Features

● Python is an Interpreted Language. It doesnot generate

intermediate code.

● Python is an Object-Oriented Language. It implements the

object oriented concepts such as class, objects and inheritance.

● Python is an easy to understand and easy to write programming

language..

● Python supports dynamic type checking. This allows the

interpreter to assign the datatype of a variable at runtime based

on the value that is assigned to that variable.

● Python is a portable language. This works in all operating system

withiout need to make change in its code.

● Python is aScalable lanugage. This allows us to develop large

programs and maintain them easily.

Installing - Windows

IDLE is Python’s built-in Integrated Development Environment.

This can be downloaded from the website www.python.org.

Steps to Install

● Download Python 2.7.14 MSI installer for windows.

● Start Installation by double click MSI Installer file.

● In Setup Wizard select installation folder for Python.

● To start Python select IDLE(Python GUI) from start menu.

Installing - Linux

To install Python in Linux OS the command’s that are to be

executed in the command line are given below.

$ sudo apt-get install idle

To start the Python application once the installation is completed

the command needed to be typed in command line is idle..

$ idle

IDLE - Features

● Cross - Platform: IDLE can be executed on multiple OS.

D. NATARAJASIVAN/TNPT

http://www.python.org/

● Interactive Interpreter: IDLE has the syntax highlighting and

code completion functions as inbuilt options.

● Multi-Window: IDLE allows us to open multiple windows to

type and execute multiple scripts at the same time.

● Basic text Operations: IDLE supports basic text operations such

as cut, copy, paste and find.

● Debugger: IDLE supports break point option and execution of

the program line by line. This allows us to examine the program

for errors.

● Interactive Mode: In interactive mode the python script is typed

directly in the interpreter window and it is executed.

● Script Mode: In script mode the script is typed and saved with

.py extension and executed.

4.2 Variables and Strings

In Python variables are used to store the values that change

during program execution. Python does not require its variables be

defined before its use. Python assigns the datatype of the variable when a

value is assigned to that variable.

Nameing Rules

● Starting letter of a variable must be A-Z or a-z or an

underscore(_).

● The remaining letters can be character, underscore or nunmber

(0-9).

● Keywords cannot be used as variable name.

Example

x = 10
y = 20
_sum = x + y
print "Result is ",_sum," by adding ",x,y

Strings

String is a collection of characters. In Python string value are

given within single quotes(‘) or double quotes(“). When more than one

line is needed to be stored in a string variable triple quotes(“““) is used.

Example:

name = ‘Mani’
course = “Computer”
college = “““Tamilnadu Polytechnic College

 Madurai 11”””

Data Types

Data Type specify the type of value that is to be sored in a

variable. Python has siz different datatypes they are

1. Numeric

2. List

3. Tuple

4. String

5. Set

6. Dictionary

D. NATARAJASIVAN/TNPT

Numeric

In Python numeric data type is used to store numberic values.

Python has four numeric types which can be stored in a variable.

Integer - It is used to store whole numbers.

Example

#integer
a = 10
b = 20
res = a + b
print "Result",res

Long Integer - In this we can store large numeric values.

Example

#long integer
a = 1234567890
b = 1987654321
res = a + b
print "Long Int Result", res

Float - is used to store decimal values.

Example

#float
a = 1.23
b = 3.45
res = a + b
print "Float Result", res

Complex - It is used to store complex number (2+3i). In python

to denote complex number we use complex() or j is used.

Example

#complex numbers
a = complex(2,3)
b = 1+4j
res = a + b
print res

List

List is used to store a collection of values in a single name, it is

similar to that of an array but not like an array. It is created using square

bracket ([]). It can store different data types in a single name.

Example

#list

_mylist = [110,10.43,1+3j,'hello']

print _mylist

Tuple

Tuple is also used to store multiple values in a single variable

name. To create a tuple the datas are enclosed within parantheses (()).

The differene between list and tuple is that tuple is read only. Values

once stored in a tuple cannot be changed.

Example

#Tuple
_mytuple = (100,10.43,1+3j,'hello')
print _mytuple
#tuple read only
#_mytuple[1] = 12.43

String

String is a collection of characters. In Python a string can be

accessed as an array of characters. To access the array of characters

numeric index starting with 0 is used.

D. NATARAJASIVAN/TNPT

Example

#string
a = 'Welcome'
b = "to Python. "
print a
print b
#To Print 4th Character
print a[3]

Set

Set is an unordered collection. Unordered Collection is a

collection which cannot be accessed using index value. This is created

using braces ({}).

Example

#set
seta = {11,23,11,23,45,1}
print seta

Dictionary

Dictionary is a key-value pair based unordered collection. This is

also created using braces ({}). In this each element is represented using

Key-Value pair the general format is (Key:Value). Key is used as index

to access the corresponding value.

Example

#Dictionary
emp = {100:'Balaji',102:'Anjay',103:'Xavier'}
print emp
print emp[102]

Operators

Operators are symbols that corresponds to mathematical or

logical operations.

● Arithmetic Operators

● Assignment Operators

● Comparison (Relational) Operators

● Logical Operators

● Bitwise Operators

● Identity Operators

● Membership Operators

Arithmetic Operators

This operator is used to manipulate numeric values and it will

return number as a result.

Symbol Operator
Name

Description

+ Addition add two values

- Subtraction subtract two values

* Multiplication multiplies two values

/ Division divides two values

% Modulus return remainder of dividing two
values

Assignment Operators

Assignment Operator (=) is used to assign the value given on the

right side of the operator to the variable given in the left side.

D. NATARAJASIVAN/TNPT

Symbol Operator
Name

Description

= Equal assign value from right to left side
variable

+= Add and adds value on right to left and store in
left side variable

*= Multiply and multiply value on right to left and
store in left side variable

/= Divide and divide value on right to left and store
in left side variable

%= Modulus and return remainder of value on right to
left and store in left side variable

Comparison (Relational) Operators

Comparison Operators is used to compare two values.

Symbol Operator
Name

Description

== Double Equal check if two values are same

<> Not equla to check if two values are not same

> Greater than check if left value is greater than right
value

< less than check if eft value is less than right
value

<= less than equal
to

check if left value is less than or equal
to right value

>= greater than
equal to

check if left value is greater than or
equal to right value

Logical Operators

Logical Operators is used to check for more than one condition

in a conditional statement.

Symbol Operator
Name

Description

or Logical or if any one condition is true then result
is true

and logical and if both conditions are true then result
is true

not logical not it reverse the result

Bitwise Operators

Bitwise Operators is used to manipulate binary value of a given

number.

Symbol Operator Name Description

& Binary AND if both are 1 will return 1

| Binary OR if any one value is 1 will return 1

^ Binary XOR
will return 1 if both value are different
and will return 0 if both value are
same

<< Binary Left
Shift

moves binary value of left value by
number given in right value in left

D. NATARAJASIVAN/TNPT

direction

>> Binary Right
Shift

moves binary value of left value by
number given in right value in right
direction

Identity Operators

Identity Operators is used to compre the memory location of two

variables.

Symbol Description Example

is return true if both variable
point to same memory

#IS
x = 10
y = x
print 'x is y', (x is y)

is not return true if both variable
point to different memory

#IS NOT
x = 10
y = 20
print 'x is y', (x is not y)

Membership Operators

Membership Operator is used to check if a value is present in a

sequence (string, list, tuple).

Symbol Description Example

in
return true if both
the given value is
found in the list

#in
x = 'Hello world'
print 'H in Hello world', ('H' in x)

not in
return true if both
the given value is
not found in the list

#not in
x = 'Hello world'
print 'A in Hello world', ('A' not in
x)

Input/Output Functions

Input

Input funciton is used to get value from the user in Python script.

syntax

variable = input(‘Prompt Message’)

Example

#input from command line
a = input('Enter a:')
b = input('Enter b:')
res = a + b
print 'Result is', res

Output

Print function is used to display values to user in python script.

Print function can be used to display output in two forms either

unformatted output orformatted output. Unformatted output uses coma(,)

in the print functionn to display values to the user.

Syntax

print ‘Message’,value

To display formatted output print statement uses format function.

The values in the format function are accessed in the print statemnt using

index values.

D. NATARAJASIVAN/TNPT

Syntax

print ‘Message {0}’.format(value)

Example

#Unformatted and Formatted Output
a = 10
b = 20
res = a + b
#Unformatted
print 'sum of',a,'+',b,' =',res
#Formatted
print 'sum of {1} + {0} = {2}'.format(a,b,res)

Decision Control-Conditional Statements

Conditional Statements are used to check for a condition and

transform the script control based on the result of the condition.

Conditional statement can have either TRUE/FALSE as the result. In

Python language decision control is implemented using if statement.

● Simple if statement

● If .. else statement

● if .. elif statement

Simple if Statement

In this format of the if statement the statement that has to be

executed if the condition is TRUE is only given. It doesnot care about the

FALSE part of the condition.

Syntax

if condition:
statements

Example

#simple if statement
age = input("Enter Your Age: ")
if age >= 18:

print "voting age"
print "You are allowed to vote"

if..else statement

In this format of the conditional statement there are two parts one

part for the statements that are to be executed when the condition is

TRUE and the second part that is the else part is for the statements that to

be executed when the condition is FALSE.இ�த conditional statement�

இர�� ப�திக� இ����.

Syntax

if condition:
TRUE Statements

else :
FALSE Statements

Example

#if..else statement
age = input("Enter Your Age: ")
if age >= 18:

print "Old enough"
print "You are allowed to vote"

else:
print "You are young"
print "Not allowed to vote"

if .. elif statement

To check more than one condtion one by one in a single

statement block if..elif statement is used.

Syntax

D. NATARAJASIVAN/TNPT

if condition1:
statements

elif condition2:
statements

elif condition3:
statements

else:
statements

Example

#if..elif statement
age = input("Enter Your Age: ")
if age >= 1 and age <= 5:

print "Child"
print "No Ticket Required"

elif age >= 6 and age <= 12:
print "Child"
print "1/2 Ticket Required"

elif age >= 12 and age <= 60:
print "adult"

print "Full ticket"
else:

print "Senior Citizen"
print "20% Concession"

Loops

To repeat exectuion of a code block more than once looping

statements are used. Python language support two types of looping

statement.

● While Loop

● For Loop

While Loop

In this loop the condition is checked first and if the condition is

true then only the statements given in the loop code block is executed.

The statements given in the loop code block is executed until the

condition becomes false.

Syntax

while condition:
statements

Example

#while loop statement
print "Sum of the series"
num = input("Enter a number: ")
x = 1
ser = 0
while x <= num:

ser = ser + x
x += 1

print ('sum of the series 1 to {0} is {1}'.format(num,ser))

For Loop

For loop statement doesnot check for the condition but it uses the

elements in a sequence to repeat the loop. It executes the loop until it has

elements in the sequence. Sequence can be a list, tuple, set or range()

function.

Syntax

D. NATARAJASIVAN/TNPT

for element in sequence:
statements

Example1:

#for loop statement
print "sum of element's in a Tuple"
tup = (1,2,3,12,43,10,4)
res = 0
for x in tup:

res = res + x
print "sum of Tuple is",res

Example2:

#For loop using range
a = input("Enter a number")
for i in range(0,a):

print '*',

4.3 Sequences:

Lists: Introduction

List is the most commonly used sequence in Python script. To

create a list square bracket is used, the values are given as

comma-separated value. To create an empty list the syntax is given

below

Syntax

lst = []
lst = list()

To create a list with value the following syntax is used

Syntax

lst = list(object)

lst = [val1, val2, val3…]

To access the list values index values is used. Index value can be

used to change the values in the list

Example

lst_a = [1,2,'welcome',4]
print "Second Element: ",lst_a[1]
lst_a[0]='hai'
print lst_a

List Methods

List implements the following methods in it.

Method Description

list.count(item) Count number of occurrece of item

list.append(item) Add itemvalue at last of the list

list.insert(index,item) Add itemat the given index position

list.index(item) Get index position of item

list.pop() remove an item from end of the list

list.remove(item) Remove the given item from the list

list.reverse() Reverse the list content

list.sort() Sort the list content

D. NATARAJASIVAN/TNPT

Fixed size lists and arrays

To create a list with fixed size like that of an array with size in

any other programming language the repetition operator (*) is used in

python along with None value.

Example

a = [None] *3
print a
a[0] = 3
a[1] = 1
a[2] = 5
print a

Output

[None, None, None]

[3,1,5]

This method is used to create two dimensional array in python

easily.

Syntax

variable = [None] * rowSize
variable[row index] = [None] * columnSize
variable[row index][col index]

Example

#Two Dimensional Array 3 row, 3 column
b = [None]*3
b[0] = [1]*3
b[1] = [2]*3
b[2] = [3]*3
b[0][0], b[0][1], b[0][2] = 10,20,30
b[1][0], b[1][1], b[1][2] = 11,21,31

b[2][0], b[2][1], b[2][2] = 12,22,32
print b

Output
>>>[[10, 20, 30], [11, 21, 31], [12, 22, 32]]

Lists and Loops

List can be accessed using for loop in python. When the list

variable name is given in the for loop the element is the list is accessed

one by one until all the elements are read.

Example

lsta = [1,2,3,4,5]
for x in lsta:

print x,

Output

>>> 1 2 3 4 5

Assignment and Reference

Python uses assignement (=) operator to copy the reference of a

value but not its value.

Example

a = [1,2,3]
b = a
b[1] = 7
print "Value in a: ",a

Output

>>>Value in a: [1,7,3]

To copy the values without copying the reference the following

syntax is used.

D. NATARAJASIVAN/TNPT

Syntax

list2 = list1[:]

Example

a = [1,2,3]
b = a[:]
b[2]=5
print "Value in A: ",a
print "Value in B: ",b

Output

>>>
Value in A: [1, 2, 3]
Value in B: [1, 2, 5]

Identity and Equality

Identity is checked in python by the use of is operator and

equality is check using double equal to (==) operator. The difference

between Identity and equality is, identity checks if the two list

corresponds to the same object whereas equality is used to check if two

lists has the same number of elements and same values.

Example 1

#Equality
lst1 = [1,2,3]
lst2 = [1,2,3]
if lst1 == lst2:

print "both are equal"

Example 2

#Identity
lst1 = [10,20,30]

lst2 = [10,20,30]
if lst1 is lst2:

print "both are identical"
else:

print "not identical"

Sorted List

Sorted list consists of elements that are sorted in an order. To

sort a list sorted function or sort method is used.

Example

#sorted List
lst = [23,19,12,30,15,1,6,2]
print "Unsorted List", lst
lst = sorted(lst)
print "Sorted Function: ",lst
lst.append(2)
print "New List: ",lst
lst.sort()
print "Sorted Method: ", lst

Output

Unsorted List [23, 19, 12, 30, 15, 1, 6, 2]
Sorted Function: [1, 2, 6, 12, 15, 19, 23, 30]
New List: [1, 2, 6, 12, 15, 19, 23, 30, 2]
Sorted Method: [1, 2, 2, 6, 12, 15, 19, 23, 30]

Tuples

Tuple is similar to that of a list it uses parenthesis (()) for

storing elements. Tuple’s value cannot be changed once assigned. A

tuple can be changed to list or a list can be changed to tuple.

D. NATARAJASIVAN/TNPT

Example

#tuple
tupa = (10,20,30,40)
print tupa
print tupa[3]
lsta = [12,30,15]
tupb = tuple(lsta)
print tupb
tupa[0]=20

Output

(10, 20, 30, 40)
40
(12, 30, 15)
Traceback (most recent call last):
 File "C:\Python\test.py", line 9, in <module>

tupa[0]=20
TypeError: 'tuple' object does not support item assignment

In this example when we try to assign a value like tupa[0]=20 it

will generate error.

Tuple and string formatting

Tuple can be used in the print statement to display values with

formatting. Like C programs format specifier used in printf statement

python also has certain format specifiers.

Format Specifier Data Type

%d Integer Value

%s String Value

%f Float Value

Syntax

print “text with string formatting” %tuple
print “text with string formatting” %(values)

Example

#String Formatting
a = 10
b = 10.23
str1 = "welcome"
tup_fmt = (a,b,str1)
print "Integer: %d\nFloat: %f\nString: %s" %tup_fmt
print "float %.1f\n Integer:%d" %(2.37,10)

String Functions

Python language has the following functions to manipulate string

values

Function Description

s.capitalize() Capitalizes first character of s

s.count(sub) Count number of occurrences of sub in s

s.find(sub) Find first index of sub in s, or -1 if not found

s.index(sub) Find first index of sub in s, or raise ValueError if
not found

s.rfind(sub) Same as find, but last index

s.rindex(sub) Same as index, but last index

s.lower() Convert s to lower case

D. NATARAJASIVAN/TNPT

s.split() Return a list of words in s

s.join(lst) Join a list of words into a single string with s as
separator

s.strip() Strip leading/trailing white space from s

s.upper() Convert s to upper string

s.replace(old, new) Replace all instances of old with new in string

4.4 Dictionary - Introduction

Dictionary is created using braces ({ }). To access the values in

the dictionary key value is used instead of numeric index.

Syntax

dct = {Key:Value}

Example

dicta = {101:'arun',102:'balu',103:'mani'}
print dicta

print dicta[101]

Output

>>> {101: 'arun', 102: 'balu', 103: 'mani'}
 arun

Dictionary Methods

Dictionary implements the following methods

Method Description

len(d) Number of elements in d

d[k] Item in d with key k

d[k] = v Set item in d with key k to v

d.items() Return a list of (key, value) pairs

d.keys() Return a list of keys in d

d.values() Return a list of values in d

d.clear() Remove all items from dictionary d

d.copy() Make a shallow copy of d

Combining two Dictionary

To combine two dictionary values update method is used. When

combining two dictionary’s if the two dictionary has the same key value

then the key value pair in the first dictionary will be erased and the value

from the second dictionary is retained.

Example

dicta = {101:'arun',102:'balu',103:'mani'}
dictb = {101:'anbu',104:'ramu',105:'rajesh'}
dicta.update(dictb)
print dicta

Output
>>>{101: 'anbu', 102: 'balu', 103: 'mani', 104: 'ramu', 105: 'rajesh'}

Making copies

In Python when assignment (=) statement is used to copy one

dictionary to another dictionary only reference is copied and not the

D. NATARAJASIVAN/TNPT

values. So to copy the values of one dictionary to another dictionary

copy() method is used.

Example

dicta = {101:'arun',102:'balu',103:'mani'}
dictb = dicta
dictb[101]='Anbu'
print "Dict A: ",dicta
dictc = dicta.copy()
dictc[101]='Antony'
print "Dict A: ",dicta
print "Dict C: ",dictc

Output

Dict A: {101: 'Anbu', 102: 'balu', 103: 'mani'}
Dict A: {101: 'Anbu', 102: 'balu', 103: 'mani'}
Dict C: {101: 'Antony', 102: 'balu', 103: 'mani'}

Persistent Variables

Persistent Variable is a variable whose value can be retained

over multiple different program execution. In python this is implemented

using the shelve module. This enables a value to be made available in

multiple programs.

Example store.py

#Persistent Storage
import shelve
data = shelve.open("info")
data["perval"] = 20
print "Persistent Value: ",data["perval"]
data.close()

Output

Persistent Value: 20

Example get.py

#Persistent Storage
import shelve
data = shelve.open("info")
print "Accessing Persistent Value across Files"
print "Persistent Value: ",data["perval"]

Output

Accessing Persistent Value across Files
Persistent Value: 20

In the first program store.py a value is stored using the shelve

module. in the second program get.py the stored persistent value is

obtained using the shelve module.

Internal Dictionaries

In Python when a program is executed the variables and values

used in the program are stored using the dictionary. To access this

dictionary the locals() function is used.

Example

#locals
a = 10
b = 20
print locals()
c = a+b
print locals()

Output

{'a': 10, 'b': 20}

{'a': 10, 'c': 30, 'b': 20}

D. NATARAJASIVAN/TNPT

4.5 Functions and Files

Functions

Function is a named code block which is used to perform a

specific task. Python uses def keyword to create user defined functions.

In python the function block is not defined using braces ({}) like other

programing languages, it uses return statement to denote the end of a

function block.

Syntax

def function_name(parameter)

statements

return

Example

def add():
 a = input("Enter A Value: ")
 b = input("Enter B Value: ")
 res = a + b
 print "Sum is ",res
 return

#main Script
add()

Output

Enter A Value: 10
Enter B Value: 20
Sum is 30

Python function is classified in to four types based on its

arguments

● Required arguments

● Keyword arguments

● Default arguments

● Variable-length arguments

Required arguments

In Required arguments format of function call in python both the

function call and function definition must have the same number of

parameters. If the parameter list is not same the script will generate

error.

Example

def add(a,b):
 res = a + b
 print "Sum is ",res
 return
#main Script
add(10,20)
add (10)

Output

Sum is 30
Traceback (most recent call last):
 File "C:\Python\24-fun-req.py", line 8, in <module>
add (10)
TypeError: add() takes exactly 2 arguments (1 given)

Keyword Arguments

In Keyword Arguments format of python function, the function

is called using parameter name and its corresponding value instead of

only value. This allows the use of parameter without any order.

D. NATARAJASIVAN/TNPT

Example

def add(a,b):
 res = a + b

 print "a(%d)+b(%d)=%d " %(a,b,res)
 return
#main Script
add(a=10,b=20)
add(b=15,a=4)

Output
a(10)+b(20)=30
a(4)+b(15)=19

Default arguments

In Default arguments format of function, we provide default

value for the parameters. if the function call does not provide value for a

parameter then the default value given in function definition will be used.

Example

def add(a,b=10):
 res = a + b
 print "a(%d)+b(%d)=%d " %(a,b,res)
 return

#main Script
add(5,23)
add(4)

Output

a(5)+b(23)=28
a(4)+b(10)=14

In this the first function call has both the parameters whereas in

the second function call value for the first parameter is only given. So

python will automatically assign the default value of 10 to the second

parameter..

Variable-length arguments

 In Variable-length arguments format of function, instead of

providing the number of parameters in the list it is automatically assigned

so that any number of values can be given as parameter list.

Example

def add(arg,*varlen):
 res = 0
 res = res + arg
 for x in varlen:
 res = res + x
 print "Sum of %d numbers is %d " %(len(varlen)+1,res)

#main Script
add(5,23)
add(4,1,2,3,4)

Output

Sum of 2 numbers is 28
Sum of 5 numbers is 14

File Handling

In Python language to perform file operations first the open()

function is used to create file object using this file object the remaining

file operations are performed Python has four operations that can be done

on a file

● Opening a File

D. NATARAJASIVAN/TNPT

● Closing a File

● Writing a File

● Reading a File

Opening a File

To open a file open() function is used. It has two parameter they

are filename and file opening mode.

Syntax

file_obj = open(filename [,mode])

File Opening Modes

● r - reading

● w - writing

● a - append

● b - binary

● + - read and write

Closing a File

The gile that has been opened has to be closed using the close()

function. Once the file is closed it is not possible to add data in it.

Syntax

file_obj.close()

Writing a File

To write text data in a file that is opened write() function is used.

Syntax

file_obj.write(content)

Reading a File

To read the contents of the file read() funtion or file object is

used. read() function is used to read the whole content of the file. File

object along with the use of for loop is used to read the content of the file

line by line.

Syntax

file_obj.read()

Example Script

fo = open("sample.txt","w")
text = "Writing into file"
fo.write(text)
text = "\nSome Content"
fo.write(text)
fo.close()
print "File written"
fo = open("sample.txt","r")
text = fo.read()
print text
fo.close()
fo = open("sample.txt","r")
print "Reading File Using File Object"
for line in fo:
 print "Line: ",line,
fo.close()

Output

File written
Writing into file
Some Content
Reading File Using File Object
Line: Writing into file
Line: Some Content

Exception Handling

Exception is an error that occurs during runtime of the script.

Exceptions are generally not identified before execution of the program.

D. NATARAJASIVAN/TNPT

If exception is not handled correctly it will stop the script execution

abruptly. Exception handling is the mechanism of handling the runtime

error that occurs during the program execution so that the program will

continue execution even after runtime error. The code block that generate

error is placed in try: block and the mechanism to handle that error is

place in the except: block.

Syntax

try:
 # Code that Generate Exception
except:
 # Handle Exception

Python� ெபா�வாக வர���ய exceptionக�

● Exception - General Error Class

● IOError - Input Output Error

● ImportError - Library Not Found Error

● ValueError - Empty Value Error

● ZeroDivisionError - Arithmetic Exception

● EOFError - File End Reached Error

Example

#simple Exception
try:
 fobj = open("test.txt","r")
 fobj.write("Welcome")
 fobj.close()
except IOError:
 print "Error in accessing file"

Output

Error in accessing file

Multiple Exceptions

In a script if there are chances of occurence of more than one

error then the try: block is followed by multiple except: blocks.

Example

 #Multiple Exception
try:
 fobj = open("test.txt","r")
 fobj.write("Welcome")
 fobj.close()
 txt = fobj.read()
except IOError:
 print "Error in accessing file"
except ValueError:
 print "Closed file cannot be read"

Finally Block

In a script even if error occurs or not some statements need to be

executed, such statements are placed in finally block.

Example

#Finally Clause
try:
 fobj = open("test.txt","r")
 fobj.write("Welcome")
 fobj.close()
 print "File Closed "
except IOError:
 print "Error in accessing file"
finally:
 print "Closing the File in finally"
 fobj.close()

D. NATARAJASIVAN/TNPT

User defined Exception

User defined exceptions are used to create custom exception that

are not predefined in the python language.

Syntax

class UserError(Exception):
 def __init__(self,data):
 self.data = data

raise UserError(‘Error Text’)

Example

class MarkError(Exception):
def __init__(self,data):

 self.data = data

print "Enter 5 subject marks"
tot = 0
i = 0
for x in range(0,5):
 try:

 mark = input("Enter mark")
 if mark < 0 or mark > 100:
 raise MarkError("Enter Marks 0-100")
 else:
 tot = tot + mark
 i = i +1

 except MarkError as e:
 print e.data
print "Total of %d subjects is %d" %(i,tot)

In this script mark value is obtained from the user, if the mark

value is less than 0 or greater than 100 then MarkError user defined

exception is arised.

Output

Enter 5 subject marks
Enter mark78
Enter mark90
Enter mark150
Enter Marks 0-100
Enter mark86
Enter mark67
Total of 4 subjects is 321

.

D. NATARAJASIVAN/TNPT

